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We present an extension of the classical scheme of smoothed particle hydrody-
namics (SPH) for the accurate handling of diffusion terms in the momentum and
energy equation of viscous and heat conducting flows. A key aspect of the present
SPH approach is the periodic reinitialization (remeshing) of the particle locations,
which are being distorted by the flow map. High-order moment conserving kernels
are being implemented for this remeshing procedure leading to accurate simulations.
The accuracy of the proposed SPH methodology is tested for a number of benchmark
problems involving flow and energy transport. The results demonstrate that the pro-
posed SPH methodology is capable of DNS quality simulations while maintaining
its robustness and adaptivity. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

The smooth particle hydrodynamics (SPH) method is a Lagrangian numerical method
introduced by Gingold and Monaghan [1], in order to model problems in continuum physics
while circumventing some of the limitations of grid-based methods. SPH is a robust numer-
ical technique that has been applied to a wide range of problems, ranging from compressible
fluid mechanics to astrophysics simulations and flow structure interactions [1–6]. Although
the method enjoys the properties of Lagrangian schemes, such as automatic adaptivity and
numerical stability, the extension of the method in order to handle diffusion-type effects has
been limited. One of the key difficulties is the handling of diffusion type operators on the
Lagrangian mesh, which is usually distorted by the flow map. A methodology to overcome
these difficulties is presented in this paper.

The development of the classical SPH methodology for compressible flow fields is de-
scribed in detail by Monaghan [7]. The computational elements are particles whose location
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is following in a Lagrangian fashion the flow map. The initial flow field quantities are in-
terpolated on the particle locations, and all the flow quantities can be reconstructed by a
linear superposition of the flow quantities carried by the particles as weighed by a smooth
interpolation kernel [8, 9]. The discrete equations are obtained from continuum equations
by expressing the flow quantities as a linear superposition of the physical quantities that are
being carried by the particles.

SPH belongs to a class of Lagrangian methods called particle methods. The key advantage
of all particle methods is to avoid the explicit discretization of the nonlinear convection
term while maintaining an automatic adaptivity for the computational elements. However,
particle methods are faced with difficulties when dealing with the approximation of viscous
effects. The approximation of diffusion operators in the context of particle methods is a
subject that has been extensively addressed in the context of vortex methods in the last
decade [10]. Several options have been identified such as the derivation of conservative
schemes based on the approximation of the diffusion operator by an integral operator [11,
12], the differentiation of the smoothing kernel [13], and the approximation of the diffusion
operator on the distorted Lagrangian grid using some averaging procedures [14].

In this work, we present a numerical scheme to account for diffusion effects in the context
of smooth particle hydrodynamics by incorporating a remeshing strategy for the particle
locations along with an efficient calculation of the diffusion operators in the distorted particle
locations.

The fact that viscosity plays an important role in many physical phenomena of engineering
interest underlines the need to improve the modeling of viscous forces while maintaining
the adaptivity and robustness of SPH. A commonly employed methodology to account
for diffusion effects in SPH is to introduce an artificial viscosity so that conservation of
momentum is ensured. However, this scheme usually yields inaccurate results, because the
separation of shear and bulk viscosity is not allowed [7, 15].

An alternative approach to remedy this situation is based on a Taylor series expansion of
the field quantities in the neighborhood of each particle and combines the standard first-order
SPH derivatives with the finite differences method [16]. The method of Brookshaw [16] is
computationally efficient, since only the first derivative of the kernel is required and con-
serves the linear momentum, while the angular momentum is approximately conserved. This
type of approximation for the diffusion term has been implemented successfully to simulate
heat conduction problems [6, 16] and incompressible viscous flows [5] with solid boundaries
but it may lead to inaccurate results when the velocity or the density field is noisy [15].

Another approximation of viscous effects in SPH involves the nested application of the
difference approximation thus calculating second-order derivatives from first derivatives
[15, 17]. This method can calculate any second derivative in such a way that the formulas
are symmetric and they conserve the linear and angular momentum. However, this method is
not computationally efficient as it would imply repeated calculations involving all particles
and might yield inaccurate results when the density is noisy [15].

Finally, an alternative approximation of the diffusion terms is based on the direct com-
putation of the second derivative of the kernel [13, 18]. However, this method is considered
to be very sensitive to disordered particle locations, in particular for low-order kernels [16].
Moreover, it strongly depends on the number of neighbors around each particle. In order to
achieve accurate results, a minimum number of neighboring particles is necessary. At the
same time as the computational cost is proportional to the number of neighbor particles, it
is desirable to keep this number near a lower limit. In order to circumvent this difficulty,
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most of the SPH implementations are using variable smoothing length (h), which allows
for an efficient balancing the number of neighbor particles near the lower limit.

In the work presented in this paper, the direct differentiation of the kernel function is
used to compute second-order derivatives. In order to remedy the drawbacks of the method
associated with the particle disorder, the particle locations are periodically reinitialized
(remeshed) onto a uniform grid. This remeshing process constitutes the key novel feature
of the computational scheme presented herein. With this feature, it is possible to construct
a computational algorithm based on the direct differentiation of the kern (first and second
derivatives) to solve a system of differential equations describing the flow and heat transport
in a Lagrangian frame, while accurately accounting for viscous and heat diffusion effects.

The process of remeshing has been introduced in incompressible flow simulations using
vortex methods [19] in order to eliminate the creation of spurious vortical structures, result-
ing from nonoverlapping smooth vortex particles. Earlier relevant studies have addressed in
detail issues such as efficient rezoning of particles and particle number control in the particle
in cell (PIC) method [20], as well as convergence problems of vortex particle methods using
random rezoning [21].

In the present SPH implementation, the remeshing process maintains the particle resolu-
tion while ensuring that the computation of the viscous terms involves a constant number
of neighboring particles.

The capabilities of the proposed remeshed SPH (rSPH) methodology is tested against fi-
nite difference calculations for a number of benchmark problems demonstrating the capabil-
ities of the present SPH methodology as a tool for accurate and robust numerical simulations.

The paper is organized as follows. In Section 2, we outline the governing compressible
Navier–Stokes equations for viscous and heat conducting flows. In Section 3, we present
the discretization of the governing equations, and in Section 4 we present the validation of
the proposed methodology.

2. GOVERNING EQUATIONS

The fundamental system of differential equations governing the motion of a two-
dimensional viscous, heat conducting, compressible medium describe the conservation of
mass, momentum and energy. The conservation equations for a calorically perfect gas with-
out an energy source are

Dρ

Dt
= −ρ

∂ui

∂xi
(1)

ρ
Dui

Dt
= − ∂p

∂xi
+ ∂τi j

∂x j
+ ρgi (2)

with

τi j = µ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)

ρcv

DT

Dt
= ∂

∂xi

(
k
∂T

∂xi

)
− p

∂ui

∂xi
+ τi j

∂ui

∂x j
, (3)

where in order to simplify the equations of motion, index notation is used for vectors and
tensors in Cartesian coordinates (i, j, k = 1, 2), where Einstein’s summation convection
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must be taken into account, and xi are the components of the position vector, ui the velocity
vector components, ρ is the density, p the pressure, gi the gravitational acceleration com-
ponent, T the temperature, µ the viscosity, k the thermal conductivity and cv the specific
heat at constant volume.

We employ Sutherland’s law to determine the dependence of the viscosity µ on the
temperature as µ = T

2
3

1 + S1
T + S1

. The system of the differential equations (1), (2), and (3) is
closed with the equation of state for an ideal gas

p = ρRT, (4)

where R is the gas constant.
The nondimensional variables are obtained from the physical variables as

x∗
i = xi

L0
, ρ∗ = ρ

ρ0
, t∗ = tU0

L0
, u∗

i = ui

U0
, T ∗ = T

T0
,

(5)

p∗ = p

ρ0 RT0
, µ∗ = µ

µ0
, g∗

i = gi

g0
, k∗ = k

k0
c∗
v = cv

cv0
,

where the superscript (∗) and the subscript (0) indicate the nondimensional and the refer-
ence quantities. The quantities L0, ρ0, U0, T0, µ0, g0 k0, and cv0 denote the characteristic
length, density, velocity, temperature, dynamic viscosity, gravity, thermal conductivity, and
specific heat at constant volume, respectively. The dimensionless numbers that appear in
the equations are

Re = ρ0U0L0

µ0
, M2 = U 2

0

γ RT0
, Pr = µ0cp

k0
, Fr = U0√

g0L0

, (6)

where γ is the ratio of the specific heat capacities. The symbol Re denotes the Reynolds
number, M the Mach number, Pr the Prandtl number, and Fr the Froude number. Other
dimensionless numbers can be defined as a function of the reference quantities and these
dimensionless numbers

Ra = g0L3
0ρ

2
0 cp
T

µ0k0T0
= Re2Pr
T

Fr2T0
, Gr = Ra

Pr
= Re2
T

Fr2T0
, (7)

where 
T is a characteristic variation of temperature of the flow and the symbols Ra
denotes the Rayleigh number and Gr the Grashof number.

Finally the nondimensional system of governing equations can be written as

Dρ∗

Dt∗ = −ρ∗ ∂u∗
i

∂x∗
i

(8)

ρ∗ Du∗
i

Dt∗ = − 1

M2γ

∂p∗

∂x∗
i

+ 1

Re

∂τ ∗
i j

∂x∗
j

+ 1

Fr2 ρ∗g∗
i , (9)

with

τ ∗
i j = µ∗

(
∂u∗

i

∂x∗
j

+ ∂u∗
j

∂x∗
i

− 2

3
δi j

∂u∗
k

∂x∗
k

)

ρ∗c∗
v

DT ∗

Dt∗ = γ

Re Pr

∂

∂x∗
i

(
k∗ ∂T ∗

∂x∗
i

)
− (γ − 1)p∗ ∂u∗

i

∂x∗
i

+ M2γ (γ − 1)

Re
τ ∗

i j

∂u∗
i

∂x∗
j

(10)
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p∗ = ρ∗T ∗. (11)

In principle, a particular flow problem may be solved by integrating the mass, momentum,
and energy equations, which are described above, and additionally the equation of state.
The information, which is necessary for the initial and boundary conditions, is imposed
with the system of differential equations in order to have a well-posed problem. The initial
conditions are usually prescribed functions that describe the velocity field and the two of
the three scalar intensive properties (density, temperature, and pressure) of the flow. For
compressible flow, the following boundary conditions can be applied, depending on the
particular application:

• Inflow boundaries: Prescribed velocity, temperature, and pressure,
• Solid surface: No-slip conditions for the velocity and prescribed temperature or heat

flux,
• Outflow surface: Prescribed pressure and prescribed gradient of velocity and temper-

ature,
• Symmetry plane: zero gradient normal to the boundary for all scalar quantities and

the velocity component parallel to the surface and zero velocity for the component that is
normal to the symmetry plane,

• Periodic plane: the computational domain is replicated throughout space.

3. THE SPH METHOD

The method is based on the Lagrangian formulation of the governing equations. The flow
quantities are discretized into particles. Each particle α is associated with a mass ma , density
ρa , velocity ua , viscosity µa , pressure pa , and position ra . The initial flow field quantities
are interpolated on the particle locations and all the flow quantities can be reconstructed by
a linear superposition of the flow quantities carried by the particles as weighed by a smooth
interpolation kernel. This interpolation is based on the theory of integral interpolants [8, 9]
so that the interpolated value of any function A at position r is expressed as

A(r) =
∫

A(r ′)W (r − r ′, h) dr ′, (12)

where the integration is over the computational domain, W is an interpolation function, and
h is a characteristic distance between the particles which is closely related to the domain
of influence of the kernel (smoothing length). The choice of the interpolation kernel is the
core of the method. Most SPH simulations use splines kernel (cubic, quartic, and quintic)
[5, 6, 15]. In this implementation, the quartic spline is used [8, 9]. The quartic spline is
constructed from three B-splines requiring the kernel and its first, second, and third derivative
be continuous. The kernel is defined as

W (r, h) = M5(r, h) = nd




s4

4 − 5s2

8 + 115
192 0 ≤ s < 1

2 , s = |r |
h

− s4

6 + 5s3

6 − 5s2

4 + 5s
24 + 55

96
1
2 ≤ s < 3

2 ,

(2.5 − s)4

24
3
2 ≤ s < 5

2 ,

0 s ≥ 5
2 ,

(13)
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where nd is a normalization constant that depends on the dimensionality of the problem and
a function of the smoothing length h. The quartic spline has compact support involving 21
neighboring particles contributing in the interpolation (in 2D). The compact support ensures
that the number of neighboring particles is finite, thus minimizing the computational cost.
The quintic spline interpolant has the same properties with the quartic spline and additionally
continuous fourth derivative but causes an increase in the computational cost [involves 29
neighboring particles (in 2D) contributing in the interpolation]. Both these kernels are
second-order accurate.

Numerically, the integral is approximated by a quadrature at the N particle locations

A(r) =
∑

b

AbVbW (r − rb, h), (14)

where the summation index b denotes a particle label and Vb is the volume of the particle
b(Vb = mb

ρb
).

The particles are moved in a Lagrangian fashion using the following formula:

d 
x
dt

= 
u. (15)

In the context of the scheme proposed by Fishelov [13], if the kernel is differentiable, it is
possible to calculate the derivative of any function A at position r as

∂ A(r)

∂xi
=

∑
b

AbVb
∂W (r − rb, h)

∂xi
. (16)

Equation (16) is not in symmetric form but it is possible to rewrite it in symmetric form,
when the differentiation is centered on a particle location (∂ A(ra)/∂xi = (∇ A)a), by using
the operator

∇ A = ∇(FA) − A∇F

F
, (17)

where F is unity. When we combine Eqs. (16) and (17), the gradient operator at the location
of the α particle reads

(∇ A)a =
∑

b

Vb(Ab − Aa)∇W (ra − rb, h). (18)

An approximation of the second-order derivatives, which describe the diffusion terms, is
based on the direct computation of the second derivative of the kernel [13, 18]

∂2 A(r)

∂xi x j
=

∑
b

Ab
mb

ρb

∂2W (r − rb, h)

∂xi∂x j
. (19)

It is possible to rewrite the second derivative (Eq. (19)) in symmetric form by using the
operator

∂2 A

∂xi x j
= ∂2 A

∂xi x j
− A

∂21

∂xi x j
, (20)
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and the second-order derivative for the location of the α particle can be written as

〈
∂2 A

∂xi x j

〉
a

=
∑

b

AbVb
∂2

∂xi x j
W (ra − rb, h) − Aa

∑
b

Vb
∂2

∂xi x j
W (ra − rb, h)

=
∑

b

Vb(Ab − Aa) · ∂2

∂xi x j
W (ra − rb, h). (21)

The use of symmetric differentiation formulas is important as it leads to simulations where
the total momentum is conserved exactly [22].

3.1. SPH Formulation of the Governing Equations

3.1.1. The Continuity Equation

The continuity equation can be solved by defining the fluid density via an interpolation
of the individual masses carried by the particles [23]

ρa(r) =
∑

b

mbW (ra − rb, h). (22)

Alternatively, the continuity equation (1) may be expressed as

Dρa

Dt
= −ρa

∑
b

Vb 
ub · ∇a W (ra − rb, h), (23)

where Vb is the volume of the particle b(Vb = mb
ρb

). Equation (23) is not in symmetric form but
it is possible to rewrite it in symmetric form by using the concept of Eq. (18). Equations (23)
yield

Dρa

Dt
= −ρa

∑
b

Vb(
ub − 
ua) · ∇a W (ra − rb, h). (24)

Equation (24) has now a symmetric form resulting in more accurate simulations than when
Eq. (23) is implemented. This equation has the form of the continuity equation proposed
by Monaghan [7]

Dρa

Dt
= −

∑
b

mb(
ub − 
ua) · ∇a W (ra − rb, h). (25)

An important difference is that in Eq. (24), when remeshing at each time step, the volume of
the particles remains practically constant. Hence, in our case the weight is the volume of the
particles and not the mass. Equation (24) is used for the simulations as it has a computational
advantage compared to Eq. (22) since the rate of change for all the physical variables
can be computed simultaneously. This implies that all the equations can be computed
simultaneously for all the particles. On the other hand, the drawback of this formulation is
that the mass conservation is not algebraically guaranteed.
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3.1.2. The Momentum Equation

The momentum equation (2) for a two-dimensional flow without the gravitational force
can be written for each particle a as

〈
ρ

Du

Dt

〉
a

= −
〈
∂p

∂x

〉
a

+ 4

3

〈
∂

∂x
µ

∂u

∂x

〉
a

− 2

3

〈
∂

∂x
µ

∂v

∂y

〉
a

+
〈

∂

∂y
µ

∂u

∂y

〉
a

+
〈

∂

∂y
µ

∂v

∂x

〉
a

(26)
〈
ρ

Dv

Dt

〉
a

= −
〈
∂p

∂y

〉
a

+ 4

3

〈
∂

∂y
µ

∂v

∂y

〉
a

− 2

3

〈
∂

∂y
µ

∂u

∂x

〉
a

+
〈

∂

∂x
µ

∂u

∂y

〉
a

+
〈

∂

∂x
µ

∂v

∂x

〉
a

,

(27)

where 
u = (u, v).
Using the standard SPH formulation [7] and the ideas outlined in previous section, the

pressure gradient of Eqs. (26) and (27) for particle α can be written as

〈
∂p

∂x

〉
a

=
∑

b

Vb(pb − pa) · ∂

∂x
W (ra − rb, h) (28)

〈
∂p

∂y

〉
a

=
∑

b

Vb(pb − pa) · ∂

∂y
W (ra − rb, h). (29)

A general formulation is adopted for the derivation of the viscous terms of the Eqs. (26) and
(27), which accounts for variable viscosity µ (the viscosity is a function of temperature).
The viscous terms are written out with the help of the chain rule of differentiation:

〈
∂

∂xi
µ

∂uk

∂x j

〉
a

=
〈
∂µ

∂xi

〉
a

〈
∂uk

∂x j

〉
a

+
〈
µ

∂2uk

∂xi x j

〉
a

=
(∑

b

Vb(µb − µa) · ∂

∂xi
W (ra − rb, h)

)

(∑
b

Vb
(
uk

b − uk
a

) · ∂

∂x j
W (ra − rb, h)

)

+ µa

∑
b

Vb
(
uk

b − uk
a

) · ∂2

∂xi x j
W (ra − rb, h). (30)

The last term in Eq. (30) is constructed by using the concept presented in previous section
[Eqs. (19)–(21)]. If the viscosity is constant, the first term in the RHS of the above equation
is zero, In this case, the final formulation for the momentum equation is symmetric and
it conserves the linear and angular momentum. The SPH formulation of the momentum
equation terms [Eqs. (26) and (27)] is obtained in a straightforward manner by combining
Eqs. (26)–(30) as needed. Note that Eq. (30) delivers all derivatives of the viscous terms
(where (i, j, k = 1, 2) and (x1 = x, x2 = y, u1 = u, u2 = v)).
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3.1.3. The Thermal Energy Equation

The two-dimensional version of the energy equation (3) reads

〈
ρcv

DT

Dt

〉
a

=
〈

∂

∂x
k
∂T

∂x

〉
a

+
〈

∂

∂y
k
∂T

∂y

〉
a

−
〈

p

(
∂u

∂x
+ ∂v

∂y

)〉
a

+
〈

2

3
µ

[(
∂u

∂x
− ∂v

∂y

)2

+
(

∂u

∂x

)2

+
(

∂v

∂y

)2]〉
a

+
〈
µ

[(
∂v

∂x
− ∂u

∂y

)2]〉
a

. (31)

The derivation of the SPH formulation of the heat diffusion term, allowing for a temperature
dependent thermal conductivity, is similar to that of the viscous terms of the momentum
equation described in the previous section. The final result reads

〈
∂

∂xi

(
k
∂T

∂xi

)〉
a

=
〈

∂k

∂xi

〉
a

〈
∂T

∂xi

〉
a

+
〈
k
∂2T

∂x2
i

〉
a

=
(∑

b

Vb(kb − ka) · ∂

∂xi
W (ra − rb, h)

)

(∑
b

Vb(Tb − Ta) · ∂

∂xi
W (ra − rb, h)

)

+ ka

∑
b

Vb(Tb − Ta) · ∂2

∂x2
i

W (ra − rb, h). (32)

The compressibility term and the viscous dissipation term in the energy equation can be
easily discretized by using the general formula of Eq. (18). No details are shown for brevity.
The energy by compression can be positive or negative, depending upon whether the fluid
is expanding or contracting.

3.2. Particle Remeshing

Lagrangian numerical methods enjoy the advantage of automatic adaptivity for their
computational elements. However, the flow strain can cluster particles in some regions of
the flow field and spread them apart in another. When this occurs, Eq. (19) is not accu-
rately representing diffusion effects resulting in inaccurate simulations. To circumvent this
problem, the position of the particles is periodically reinitialized on a uniform grid and the
properties of the old particles are interpolated onto the new particle locations. This kind of
interpolation has been implemented in a number of calculations involving particle methods
[10, 19, 23, 24] but it has not been reported before, to the best of our knowledge, in the
context of SPH, in conjunction with the approximation of the diffusion operator.

For the remeshing procedure two types of interpolation are implemented: a second-order
ordinary interpolation and a third-order smoothing interpolation, which are further discussed
in the following sections.
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3.2.1. Ordinary Interpolation

The second-order ordinary interpolation formula [10, 24] is conserving the interpolated
quantity (zero order moment) as well as its first (impulse) and second moment (angular
impulse). This interpolation �2, which is used for the vortex particle simulations [25], can
be expressed in one dimension as

�2(x, h) =




1 − s2 0 ≤ s < 1
2 , s = |x |

h

(1 − s)(2 − s)
2 0 ≤ s < 3

2 ,

0 s ≥ 3
2 .

(33)

The manner in which this interpolation formula is applied, is shown as


Q̃i (x̃i ) = Q j (x j )�2(x̃i − x j , h), (34)

which means that the j th old particle from location x j with property Q j contributes in the
new i th particle which is in position x̃ i the interpolating quantity 
Q̃i . The interpolation
in higher dimensions is obtained using tensorial products in each coordinate direction. The
interpolation 3, 9, and 27 points respectively in one, two, or three dimensions. This formula
for two dimensions can be written as


Q̃i (x̃ i , ỹi ) = Q j (x j , y j )�2(x̃i − x j , h)�2(ỹi − y j , h). (35)

The interpolated quantity Q j must be an extensive property of the particle that is conserved

Q j =




m j

m j u j

m jv j

E j


, (36)

where m j is the mass of the particle, m j u j and m jv j are the u and v momentum of the
particle and E j the total energy of the particle. Note that the interpolation function � is
discontinuous at the interpolating node locations. This implies that the larger the fluctuations
of the interpolating quantity, the larger the interpolation errors.

3.2.2. Smoothing Interpolation

The smoothing interpolation formulas attempt to minimize the error that the ordinary
interpolation might produce, providing us with a moment conserving interpolation, which
is continuous everywhere inside the interpolation stencil

M ′
4(x, h) =




1 − 5s2

2 + 3s3

2 0 ≤ s < 1, s = |x |
h

(1 − s)(2 − s)2

2 1 ≤ s < 2,

0 s ≥ 2.

(37)

The interpolation function and also its first and second derivative are continuous and repro-
duce second-order polynomials. The interpolation uses 4, 16, and 64 points in one, two, and
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three dimensions, respectively. This interpolation is used in the present SPH implementa-
tion in the main computational domain, away from solid boundaries. For further details on
the accuracy and the properties of the interpolating functions, the reader is referred to [10].

3.2.3. Interpolation Near Solid Boundaries

The remeshing procedure with ordinary or smoothing interpolating formulas cannot be
used near solid boundaries. The interpolating stencil may extend to the interior of the body,
which introduces spurious computational elements. Hence, in regions near boundaries we
are using a biased ordinary interpolation [10], which is again second order and conserves
the same quantities as the ordinary interpolation (conserves the first two moments and the
quantity Q j ).

�(x, h) =




1 − 3
2 s + 1

2 s2 for 1st cell from the wall, s = |x |
h

s(2 − s) for 2nd cell from the wall,
s(s − 2)

2 for 3rd cell from the wall,

0 otherwise.

(38)

3.3. Numerical Implementation

3.3.1. Boundary Conditions

All the boundary conditions are modeled by boundary particles, which have similar
physical properties to those of the particles that represent the flow field. These boundary
particles interact with the interior particles in a way such that the necessary boundary
conditions are satisfied (non-slip, inflow, and outflow for the momentum equation and
the temperature or heat flux for the energy equation). More detailed information for the
implementation of boundary conditions can be found in [6, 18].

3.3.2. Time Integration

We implemented second- and third-order Runge–Kutta schemes for our time integration.
Higher-order schemes (fourth-order Runge–Kutta) can be also used. However, due to their
larger stability limit, they allow integration using larger time steps. However, this may be
detrimental to the overall accuracy of the simulation as remeshing is performed only after
each full time step. This choice may led to additional errors caused by particle disorder in
the last stage of the integration in flows with a large strain rate.

3.3.3. Remeshing

Particles are remeshed with a frequency depending on the strain of the flow map. The
number of time steps can vary from one to ten depending upon the flow field and the size
of the time step. If the flow field is uniform without recirculation or stagnation regions, the
remeshing can be evaluated after 10 or more iterations as particles maintain their uniform
distribution. However, for a flow with recirculation (e.g., shear layer), the remeshing pro-
cedure is performed at every time step. The additional computational cost of the remeshing
is less than 10% of the total computational cost even when remeshing in every time step.

The additional computation time resulting from remeshing is a small penalty to pay
compared to the significant advantage of ensuring that the particles are always almost
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equidistant, thus resulting in an accurate approximation of the viscous terms. This is a
key aspect of the present work compared to ordinary SPH simulations where the distance
between the particles can exhibit large variations.

In addition, the remeshing procedure resolves one computational problem that usually
occurs in SPH simulations. The pressure force in the momentum equation is proportional
to the derivative of the kernel which normally, for B-Splines, reduces to zero when the
distance between two particle is small. As a consequence, in such cases the pressure force
is attractive and this can introduce large errors in the simulations. The remeshing procedure
does not allow the particles to get very close to each other.

On the other hand, the remeshing procedure introduces numerical errors which may
be viewed as aliasing errors due to the implementation of remeshing kernels with finite
support. The extra diffusion that the remeshing procedure introduces can be quite large
(with remeshing at every time step). This is indeed a cause of concern. However, it should
be pointed out that the added dissipation induced by remeshing is proportional to the
gradients of the flow map, which are induced by the particle distortion. These gradients
remain very small when remeshing is performed at each time step.

Using an antidiffusive process is feasible (e.g., remeshing using Beale’s method [26]).
However, there is no clear way to precisely control the error induced by remeshing since this
is strongly coupled with the particular flow map under consideration. Finally, as discussed
in [19, 27], the overall effect of remeshing is to act as a subgrid scale model and has been
shown to have a negligible effect on the overall accuracy of the simulations [19].

4. TEST CALCULATIONS FOR ISOTHERMAL

AND NONISOTHERMAL VISCOUS FLOWS

We examine the validity of our proposed methodology on a series of benchmark two-
dimensional problems. These problems are as follows:

• Taylor–Green flow,
• Double shear layer,
• Lid-driven flow in a cavity,
• Natural convection in a differentially heated cavity, and
• Mixed convection in a lid-driven cavity.

4.1. Two-Dimensional Taylor–Green Flow

As a first test of the viscous SPH calculations, we perform a simulation of the Taylor–
Green flow. Taylor–Green flow consists of a periodic decaying array of vortices in the x − y
plane specified in nondimensional form by

u(x, y, t) = −Uebt cos(2πx) sin(2πy) (39)

v(x, y, t) = Uebt sin(2πx) cos(2πy) (40)

p(x, y, t) = pref − U 2

4
ebt (cos(4πx) + cos(4πy)), (41)

where b = −8π2

Re and pref = 1
γ M2 . The reference Mach number M is set to 0.5 and the
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FIG. 1. Decay of total velocity for Re = 1. Comparison of the SPH solution with 15,625 particles (−) with
the exact incompressible solution (�) and with a high-order finite differences solution (+) [28].

velocity U is taken as 0.04 and the computational domain was set to [0, 1] × [0, 1]. The
simulations are performed for a wide range of the Reynolds number (0.1–1000) to test
the accuracy of the method in cases where the viscous effects are either dominant (small
Re), comparable (intermediate Re), or minimal (large Re) compared to the inertial forces.
In the simulation, the boundary conditions are periodic in all directions. A third-order
Runge–Kutta scheme with a constant time step is implemented in all the simulations.
The smoothing interpolation formula M ′

4 (Eq. (37)) was used at every time step for the
remeshing. The time-depended behavior of the maximum velocity of the flow for Re = 1
calculated from SPH (with 15,625 particles) is presented in Fig. 1 and is compared to
the analytical solution for an incompressible fluid and with numerical results from a
compressible finite difference code. The finite difference code is a Navier–Stokes solver
in conservative form that uses fifth- and sixth-order compact Pade scheme for the con-
vective and viscous terms respectively and third-order Runge–Kutta for time integration
[28]. The compressibility (M = 0.5) effects have negligible influence in the Taylor–Green
flow so that the incompressible analytical solution can be compared to the computa-
tional results. For the error analysis of the SPH simulations, the relative error (L∞) is
used

L∞ = Tmax
max
t=0

(∣∣∣∣ut
ex − ut

SPH

ut
ex

∣∣∣∣
)

,

where ut
ex denotes the maximum velocity of the exact incompressible solution at time t

and ut
SPH the maximum velocity of the SPH simulation at time t . Tmax is the time where

uTmax
ex = U

50 . The relative error (L∞) of the SPH calculations is less than 5% for Re = 1
and decreases as the number of particles is increased (Fig. 2). The SPH simulation with
15,625 particles remains accurate (L∞ < 4%) and grid independent until Re = 100 but it
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FIG. 2. L∞ error of SPH simulations of the Taylor–Green flow for different resolutions (Re = 1).

is necessary to increase the particle resolution for larger Reynolds numbers (Re = 1000)
(Fig. 3).

4.2. Two-Dimensional Double Shear Layer

The second test for the SPH calculations is the double shear layer geometry, where the
initial flow field consists of a horizontal shear layer of finite thickness, perturbed by a small
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FIG. 3. L∞ error of SPH simulations of the Taylor–Green flow for different Reynolds numbers. (−) Simulation
with 15,625 particles and (- -) with 40,000 particles.
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amplitude vertical velocity

u(x, y) = U0 + (1 − U0)e
−(10y)6

(42)

v(x, y) = δ sin(2πx) cos(2πy), (43)

where U0 = −1 and δ = 0.01. For the initial temperature, the Crocco–Busemann relation is
employed, which yields a general relation for the dependence of temperature on velocity,
with the assumption of a Prandtl number of unity [29]

T (x, y) = M2 γ − 1

2
[u(x, y)(1 + U0) − u(x, y)2 − U0]

+ T0
1 − u(x, y)

(1 − U0)
+ u(x, y) − U0

(1 − U0)
, (44)

where T0 is set 0.5 and M is the Mach number. For the simulation, the example was
considered

M = 0.5 Re = 1000 Pr = 0.72,

and the computational domain was set to [−0.5, 0.5] × [−0.5, 0.5]. For the comparison
of the SPH calculations, the same high-order compressible finite difference code [28] as
in Section 4.1 above was employed. Both SPH and finite difference simulations must be
comparable from a common initial stage that satisfies the Navier–Stokes and the energy
equations. The SPH simulation is initialized from the finite difference solution at time
t = 0.3 by using a seventh-order polynomial interpolation. From the comparison of den-
sity snapshots (Fig. 4), one may observe that the two methods are capable of producing

FD Time=4

FIG. 4. Density contour for smooth shear layer. Left SPH with 90,000 particles, right finite differences with
150 × 200 grid [28].
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SPH with 90000 Particles

FIG. 5. Vorticity contours at time t = 3.0. SPH for 40,000, 90,000 and 160,000 particles and finite differences
with 150 × 200 grid [28].

comparable results. It is also clear that SPH is smoothing the values of the comparable
physical quantities. This is more apparent in the vorticity contours (Figs. 5 and 6). The
time histories of two locations ((x, y) = (−0.25, −0.25) and (x, y) = (0, 0)) in the domain
show that the SPH and finite difference solution exhibit the same behavior. SPH seems able
to capture almost all the details of the flow in these points with some smoothing of the
amplitude (Figs. 7 and 8).

The double shear layer is a demanding benchmark problem as many numerical methods
exhibit the generation of spurious structures at the thin shear layers [30]. The present rSPH
methodology does not encounter this difficulty albeit the results exhibit more dissipation
compared to a high-order finite difference scheme.

4.3. Lid-Driven Flow in a Square Cavity

The driven cavity problem has been used to validate the SPH in presence of wall boundary
conditions. For this simulation the characteristic numbers are defined as

M = 0.1 Re = 100 Pr = 0.72.

Because the Mach number is set to 0.1, the flow is considered practically incompressible. It is
possible to set the Mach number smaller than this value but the time step of the calculations
will be (unnecessarily) extremely small, since it is proportional to the square of Mach
number (Eq. (9)). In the SPH simulation, 62,500 particles are used (corresponding to a grid
of [250] × [250] nodes). The time integration is achieved with a two-stage Runge–Kutta
and the field is reinitialized at every time step by using the smoothing interpolation formula
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FIG. 6.Vorticity contours at timet�5
0. SPH for 40,000, 90,000 and 160,000 particles andÞnite differenceswith 150�200 grid [28]. TimeTemperature012345622.12.22.32.42.52.62.72.82.933.13.23.33.43.53.6

FIG. 7.Time history of density, temperature u andvvelocity in point x=−0 .25, y=−0 .25 for a simulation
with 160,000 particles. ( −) SPH simulation, (- �-) finite differences [28].
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FIG. 8. Time history of density, temperature u and v velocity in point x = 0, y = 0 for a simulation with
160,000 particles. (−) SPH simulation, (-�-) finite differences [28].

in the main field and the ordinary and the one-side interpolation near the boundaries. For
validation of the computations, the benchmark solution of Ghia et al. [31] is employed. The
comparison of SPH with the numerical results of Ghia et al. shows very good agreement
for the vorticity along the moving boundary and the boundary layers in the stationary and
moving walls (Figs. 9 and 10). In the flow field the central and the secondary recirculations
are predicted accurately (Fig. 11).

4.4. Natural Convection in a Differentially Heated Cavity

The SPH implementation is tested for the problem of buoyant laminar flow in a closed
cavity with side walls that remain at constant but different temperatures and with insulated
bottom and top walls. In order to take into account the buoyancy forces, the gravitational
force is included in the momentum equation (2) and the hydrodynamic pressure in the
equation of state (4). The characteristic dimensionless numbers of the simulation are

M = 0.1 Ra = 103, 104 Pr = 0.71.

For the SPH simulation, 63,000 particles are used and the solution is compared to the
benchmark solution of de Vahl Davis [32] (Table I). The relative error is less than 8%
for all quantities tested as shown in Table I and demonstrate good agreement with the
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FIG. 9. Vorticity along the moving boundary, and v velocity along horizontal line through geometric center
of the cavity for Reynolds 100. (−) SPH simulation, (�) Ghia et al. [31].

benchmark solution. Similar accuracy is observed for the flow velocity and temperature
fields (Fig. 12).

4.5. Mixed Convection in a Driven Cavity

The last test case of the SPH implementation is the problem of mixed convection in a
driven cavity. The top wall of a lid-driven cavity moves with constant speed and it is at a
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FIG. 10. u velocity along vertical line through geometric center of the cavity for Reynolds 100. (−) SPH
simulation, (�) Ghia et al. [31].
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FIG. 11. Vorticity contours for flow in driven cavity (Reynolds 100).

TABLE I

Comparison of the SPH Simulation with the Benchmark Solution of Vahl Devis [32]

103 104

Ra Benchmark SPH error % Benchmark SPH error %

Umax 3.649 3.431 5.97 16.178 17.312 7.01
Y 0.813 0.812 0.12 0.823 0.823 0.00
Vmax 3.697 3.511 5.03 19.617 20.051 2.21
X 0.178 0.176 1.12 0.119 0.112 5.88
Nuave 1.118 1.037 7.25 2.243 2.117 5.62
Nu1/2 1.118 1.039 7.07 2.243 2.117 5.62
Nu0 1.117 1.033 7.52 2.238 2.081 7.02
Numax 1.505 1.392 7.51 3.528 3.448 2.27
Y 0.092 0.098 6.52 0.143 0.136 4.90
Numin 0.692 0.705 1.88 0.586 0.541 7.68
Y 1.000 1.000 0.00 1.000 1.000 0.00

Umax = maximum horizontal velocity on the vertical mid-plane of the cavity and its position.
Vmax = maximum vertical velocity on the horizontal mid-plane of the cavity and its position.
Nuave = the average Nusselt number throughout the cavity.
Nu1/2 = the average Nusselt number on the vertical miplane.
Nu0 = the average Nusselt number on the vertical boundary of the cavity at x = 0.
Numax = the maximum value of the local Nusselt number on the vertical boundary of the cavity at x = 0 and its

position.
Numin = the minimum value of the local Nusselt number on the vertical boundary of the cavity at x = 0 and its

position.
error = relative error between the benchmark and SPH solution.
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FIG. 14. Local Nusselt profile at the top wall of the cavity for Reynolds 400 and Grashoff 102. (−) SPH
simulation with 63,000 particles, (�) Iwatsu et al.[33].

constant temperature (hot). The other three walls are stationary. The side walls are adiabatic
and the bottom wall is isothermal (cold). The nondimensional numbers of the simulation
are

M = 0.1 Re = 400 Pr = 0.71 Gr = 102,

and 63,000 particles are used. The SPH solution is compared with the numerical results of
Iwatsu et al. [33]. A schematic representation of the temperature profile along vertical line
through geometric center of the cavity is presented in Fig. 13, which shows good agreement
near the cold wall. The small difference of the temperature near the hot wall has minimal
effect on the heat transfer coefficient (local Nusselt number) (Fig. 14).

5. CONCLUSIONS

The present results indicate that SPH with the implementation of remeshing is an ac-
curate numerical method to resolve low Mach number compressible viscous conductive
flows. The accuracy of the method comes with a minimal additional computational cost
while maintaining the adaptive character of the method. The implementation of high-order
remeshing schemes improves the accuracy of SPH and additionally increases the computa-
tional efficiency of the algorithm. The existence of high-frequency acoustic waves, which
are resolved in the simulations, places a severe restriction on time-stepping increments. In
the present study, it is assumed that a Mach number less than 0.3 corresponds to a practically
incompressible flow, which is a reasonable assumption.
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The SPH implementation as a compressible flow algorithm can compute natural convec-
tion flows with large temperature differences, thus providing us with a computational tool
which exceeds the validity and therefore capability of Boussinesq-type models.

Our present work focuses on the implementation of the proposed methodology to three-
dimensional flows. The tensorial character of the remeshing schemes makes it easily extend-
able to three dimensions and no extra algorithmic constraints are imposed by the proposed
modeling of the viscous terms in conjunction with remeshing.

However, one difficulty we foresee with the present formulation of remeshing is the
simulations of flows involving multiple materials and the possible smearing of shock regions
in highly compressible flows. Work is underway to circumvent these difficulties by adopting
special remeshing procedures that would accommodate relevant shock-capturing schemes,
thus providing a robust and accurate SPH methodology.
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